

中华人民共和国国家标准

GB/T 3463-1995

钽

丝

Tantalum wires

1995-10-17发布

1996-03-01 实施

中华人民共和国国家标准

GB/T 3463-1995

钼

44

代替 GB 3463--82

Tantalum wires

1 主题内容与适用范围

本标准规定了钽丝的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于钽和铌电解电容器阳极引线等用的钽丝。

2 引用标准

- GB 228 金属拉伸试验方法
- GB 15076.1~15076.15 钽铌化学分析方法

3 产品分类

- 3.1 根据钽丝纯度不同划分为 Ta1(纯钽丝)、Ta2(掺杂钽丝)二个牌号。每个牌号产品根据用途不同, 又分为固体钽电解电容器用钽丝(Ta1S、Ta2S)和液体钽电解电容器引线用钽丝(Ta1L、Ta2L)两种类型。
- 3.2 钽丝分为软态(M)、半硬态(Y2)、和硬态(Y)三种状态。
- 3.3 钽丝的牌号、类型、状态和规格应符合表1规定。

表 1

牌 号	类 型	状 态	直 径,mm	单根重量,g 不小于
			0. 20	100
			0. 25	120
			0.30	160
			0. 35	160
Tal	TalS		0.40	160
141	1415	M,Yz,Y	0.50	200
			0.60	250
			0.80	300
Ta2	Ta2S		1.00	300
]	0.40	160
	TalL		0.46	160
	Ta2L		0.50	200
			0.60	250

4 技术要求

4.1 化学成分

钽丝化学成分应符合表 2 规定。

表 2							ppm						
牌 号	Ta含量	杂 质 含 量,不大于											
M- 3	14 11 112	0	С	N	Н	Fe	Nb	Si	Ni	w	Мо	Cr	Ti
Tal	余量	200	50	40	20	50	100	50	30	40	30	40	10
Ta2	余量	300	70	40	20	70	100	300	30	40	30	50	20

4.2 尺寸及允许偏差

钽丝直径及允许偏差应符合表 3 规定。

表	3 mm
直 径	允 许 偏 差
0. 20 0. 25	±0.010
0. 30 0. 35 0. 40 0. 46 0. 50 0. 60	±0.015
0. 80 1. 0	± 0. 020

4.3 力学性能

钽丝室温抗拉强度应符合表 4 规定,伸长率提供实测数据。

表 4

状态	抗拉强度σω,MPa
M	300~600
Y ₂	>600~1 000
Y	>1 000

4.4 电性能

- 4.4.1 钽丝漏电流不大于 0.10 μA/cm²。
- 4.4.2 液体钽丝表面比容(Kc)为 10~12 μF V/cm²。
- 4.5 工艺性能
- 4.5.1 钽丝的抗氧脆性弯折次数应符合如下规定:

直径为 0. 20、0. 25、0. 30、0. 35、0. 40 mm 的 Ta1 钽丝抗氧脆性弯折次数不小于 2 次:直径为 0. 46、0. 50、0. 60、0. 80、1. 0 mm 的不小于 3 次。

Ta2 钽丝抗氧脆性弯折次数不小于 3 次。

- 4.5.2 钽丝无扭结。Ta2 钽丝线段的弧度不得小于直径 500 mm 的样板圆弧度;线段的翘起高度不得大于 25 mm。
- 4.6 表面质量
- 4.6.1 固体钽电解电容器引线用钽丝表面应光亮、清洁,无油污、裂纹和毛刺,允许有加工过程中产生的轻微划痕。
- 4.6.2 液体钽电解电容器引线用钽丝表面应光亮、清洁和无油污,在放大 10 倍下观察,无连续的凹坑和划痕。

5 试验方法

- 5.1 化学成分分析方法应按 GB 15076.1~15076.15 进行。
- 5.2 抗拉强度试验方法按 GB 228 进行。
- 5.3 产品尺寸用相应精度的测量工具进行。
- 5.4 电性能检验方法按附录 A 和附录 B 进行。
- 5.5 抗氧脆性检验按如下方法进行:

取长度 20 mm 的试样,选择氧含量为 1 700 ppm 和碳含量为 100 ppm 的钽粉(直径小于和等于 0.30 mm的钽丝选用氧含量为 1 500 ppm 的钽粉),按表 5 规定压成钽块,置于真空度不低于 2.7× 10⁻² Pa的炉内,升温至 1 900 C恒温烧结 30 min(漏气率;在炉内压力为 2.7×10⁻² Pa 时,关闭抽气阀 2 min后,炉内压力不大于 0.13 Pa),冷却 120 min 后出炉。用尖嘴钳夹住钽块,用镊子钳夹住钽丝顶端。在根部弯曲 90 度再恢复到原来位置为 1 次,反方向弯曲 90 度再恢复到原来位置为 2 次。依此类推,直至钽丝折断为止。

钽丝直径,mm	钽粉重量·g	钽块直径,mm
20,0.25,0.30,0.35,0.40	0. 3	4±0.3
0.46,0.50	1.0	6±0.5
0.60,0.80,1.0	2. 0	6±0.5

表 5

- 5.6 弧度和翘起高度检验按如下方法进行:
- a. 弧度检验取长 200 mm 钽丝,放在光滑平面上,让其自由松开,与样板圆(直径 500 mm)在同一平面上比较,不得小于样板圆弧度。
- b. 翘起高度检验取长 600 mm 钽丝,放在光滑平面上,让其自由松开,钽丝端点翘起高度不得大于 25 mm。
- 5.7 固体电解电容器引线用钽丝外观质量用目视检查;液体电解电容器引线用钽丝放大 25 倍进行检查。

6 检验规则

6.1 检查和验收

产品由供方质量监督部门检验,保证产品符合本标准规定,并填写质量证明书。

6-2 组批

产品应成批提交验收。每批由同一原料、同一工艺、同一规格和状态的产品组成。

- 6.3 检验项目
- 6.3.1 每盘钽丝应进行尺寸、力学性能、工艺性能、电性能和表面质量的检验。
- 6.4 取样位置和取样数量
- 6.4.1 化学成分从每批中任取一个试样。
- 6.4.2 力学性能检验从每盘中任取 3 个试样,报平均值。
- 6.4.3 抗氧脆性试验从每盘中任取5个试样,报单支结果。
- 6.4.4 电性能检验从每盘中任取3个试样,漏电流报最大值,比容报平均值。
- 6.4.5 线段弧度和翘起高度检验从每盘中任取一个试样。
- 6.5 重复试验

各项分析检验结果中,如有一个结果不合格时,则加倍取样对不合格项目进行复验。如仍有一个结果不合格时,则该盘产品为不合格。

7 标志、包装、运输、贮存

- 7.1 每盘产品应附有标签,注明:
 - a. 供方名称;
 - b. 产品牌号、类型、批号、规格、状态和净重;
 - c. 包装日期。
- 7.2 钽丝绕在直径为 210 mm 的线盘上,每盘线由一根钽丝绕成。缠绕均匀、无扭结、弯折和交叉。外绕 3 层非油包装纸,包装扎紧,并用聚乙烯塑料袋封好,置入填好衬垫的木箱中。
- 7.3 运输和贮存时,应防止碰撞、受潮或活性化学物质的腐蚀。
- 7.4 质量证明书

每批钽丝应附有质量证明书,注明:

- a. 供方名称;
- b. 产品名称:
- c. 产品牌号、类型和规格:
- d. 产品批号、净重和件数;
- e. 各项分析检验结果及检验部门印记;
- f. 本标准编号:
- g. 检验日期。

附 录 A 钽丝漏电测量方法

(补充件)

A1 主题内容与适用范围

本方法规定了测定钽丝漏电流所用试样的制备和要求、试验仪器与材料、试验条件和步骤以及试验结果的计算。

本方法适用于电解电容器引线用钽丝漏电流的测定。

A2 方法原理

经赋能处理后的试样,置于规定的测量仪中,接通测量仪表,在规定的电压下,负荷 2 \min ,从仪表上读出试样的漏电流值(μ A),然后换算成单位面积的漏电流值(μ A/cm²)。

A3 试验仪器与材料

- A3.1 仪器
- A3.1.1 漏电流测量仪 B-102型。
- A3.1.2 万用电源 WY-2型。
- A3.1.3 温度控制装置 电接点温度计。
- A3.1.4 电烘箱 0~200℃,鼓风式。
- A3.2 材料
- A3.2.1 磷酸(ρ1.69 g/mL)分析纯。
- A3.2.2 去离子水 电阻率≥600 kΩ·cm。

A4 试样制备和要求

A4.1 试样形状.尺寸

取 325 mm 长的钽丝作为试料,其中 265 mm 绕成如图 A1 所示的线圈,相邻两圈不得接触,剩余 60 mm 长钽丝做补助引线。



图 A1 试样形状和尺寸

A4.2 试样处理

试样按下列条件进行处理:

- a 退火制度:1900 C时,保温 30 min。
- b. 真空度:炉内气体压力不大于 0.026 7 Pa。
- c. 漏气速率:在炉内气体压力为 0.026 7 Pa 时关闭抽气阀门 2 min 后,炉内气体压力不大干

0.133 Pa.

A5 试验条件和步骤

A5.1 賦能

A5.1.1 赋能条件按表 A1 规定。

表 A1

赋 能 液	0. 1%H₃PO₄		
赋能电压,V	225		
升压电流密度·mA/cm²	. 5		
赋能液温度,C	90±2		
恒压时间,min	30		

A5.1.2 将处理后的试样点焊在钽丁字架上,放入赋能液中,使赋能液浸至试样引线的二分之一处。丁字架接电源正极,银箔接电源负极,两极不得相碰。赋能装置如图 A2 所示。

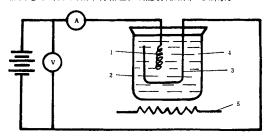


图 A2 赋能装置示意图

- 1--试样;2--烧杯或银槽;3-银箔阴极;4-赋能液;5--加热电炉
- A5.1.3 将赋能液加热至规定温度,保持恒温,按表 A1 规定的条件进行赋能。
- A5.1.4 赋能过程中应添加稀释液,使赋能液面高度保持不变。
- A5.1.5 赋能后试样用去离子水冲洗 3 遍,然后放入 85 C烘箱中烘 30 min。
- A5.2 测量
- A5.2.1 测量条件按表 A2 规定。

表 A2

测量液	0.1%H ₃ PO ₄
测量电压,V	180
测量时间,min	2
測量温度,で	23±2

- A5.2.2 将试样放入测量液中,测量液必须浸没全部螺旋部分。测量装置同赋能装置。
- A5.2.3 测量漏电流取 2 min 读数。

A6 试验结果的计算

漏电流按式(A1)计算:

式中: K --- 漏电流计算值, uA/cm2;

I---实测漏电流,μA;

S---试样有效面积,cm2。

A7 试验报告

试验报告包括下列内容:

- a. 报告编号;
- b. 试验日期;
- c. 牌号、批号和规格;
- d. 试验结果;
- e. 试验人员。

附录B 表面比容測量方法 (补充件)

B1 主题内容与适用范围

本标准规定了测定钽丝表面比容(K_c)所用试样的制备和要求、试验仪器与材料、试验条件和步骤以及试验结果的计算。

本方法适用于电解电容器引线用钽丝表面比容 (K_c) 的测定。

B2 方法原理

经赋能处理后的试样,置入规定的测量液中,接通测量仪表,施加 2 V 的直流偏压、1 V 的交流信号和 100 Hz 的频率,从仪表上读出试样的容量(μF),然后换算成单位面积比容($\mu F \cdot V/cm^2$)。

B3 试验仪器与材料

- B3.1 仪器
- B3.1.1 表面比容测量仪 CQ4型电容电桥。
- B3.1.2 万用电源 WY-2型。
- B3.1.3 温度控制装置 电接点温度计。
- B3.1.4 电烘箱 0~200℃,鼓风式。
- B3.2 材料
- B3.2.1 硫酸(ρ1.84 g/mL)。
- B3.2.2 去离子水。

B4 试样制备和要求

试样制备和要求同 A3。

B5 试验条件和步骤

- B5.1 按 A3.1、A3.2 对试样进行漏电流测量后,将试样进行烘干,再测表面比容。
- B5.2 测表面比容时,将试样放入测量液中,测量液必须将钼丝螺旋部分全部浸没。
- B5.3 表面比容测试条件按表 B1 规定。

表 B1

38%H₂SO₄		
23±2		
2		
1		
100		

B6 试验结果的计算

表面比容按下式计算:

式中: K_c —表面比容, μ F · V/cm^2 ;

C——实测比容, μ F;

VF---赋能电压,V;

S----试样有效面积,cm2。

B7 试验报告

试验报告同 A7。

附加说明:

- 本标准由中国有色金属工业总公司提出。
- 本标准由中国有色金属工业总公司标准计量研究所归口。
- 本标准由株洲硬质合金厂负责起草。
- 本标准主要起草人王肇信、余江陵、徐令斌。